Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Air Qual Atmos Health ; 15(1): 47-58, 2022.
Article in English | MEDLINE | ID: covidwho-1371386

ABSTRACT

To better understand the effects of COVID-19 on air quality in Taiyuan, hourly in situ measurements of PM2.5(particulate matter with an aerodynamic diameter less than 2.5 mm) and chemical components (water-soluble ions, organic carbon (OC), elemental carbon (EC), and trace elements) were conducted before (P1: 1 January-23 January 2020) and during (P2: 24 January-15 February 2020) the coronavirus disease 2019 (COVID-19) outbreak. The average concentrations of PM2.5 dropped from 122.0 µg/m3 during P1 to 83.3 µg/m3 during P2. Compared with P1, except for fireworks burning-related chemical components (K+, Mg2+, K, Cu, Ba), the concentrations of other chemical components of PM2.5 decreased by14.9-69.8%. Although the large decrease of some emission sources, fireworks burning still resulted in the occurrence of pollution events during P2. The analysis results of positive matrix factorization model suggested that six PM2.5 sources changed significantly before and during the outbreak of the epidemic. The contributions of vehicle emission, industrial process, and dust to PM2.5 decreased from 23.1%, 3.5%, and 4.0% during P1 to 7.7%, 3.4%, and 2.3% during P2, respectively, whereas the contributions of secondary inorganic aerosol, fireworks burning, and coal combustion to PM2.5 increased from 62.0%, 1.8%, and 5.5% to 71.5%, 9.0%, and 6.2%, respectively. The source apportionment results were also affected by air mass transport. The largest reductions of vehicle emission, industrial process, and dust source were distinctly seen for the air masses from northwest. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s11869-021-01082-y.

3.
Sci Total Environ ; 744: 140840, 2020 Nov 20.
Article in English | MEDLINE | ID: covidwho-643247

ABSTRACT

To control the spread of the novel coronavirus disease 2019 (COVID-19) in China, many anthropogenic activities were reduced and even closed on the national scale. To study the impact of this reduction and closing down, hourly concentrations of PM2.5-related elements were measured at a rural site before (12-25 January 2020), during (26 January-9 February 2020) and after (22 March-2 April 2020) the control period when all people remained socially isolated in their homes and could not return to economic zones for work. Nine major sources were identified by the positive matrix factorization model, including fireworks burning, coal combustion, vehicle emissions, dust, Cr industry, oil combustion, Se industry, Zn smelter, and iron and steel industry. Before the control period, K, Fe, Ca, Zn, Ba and Cu were the main elements, and fireworks burning, Zn smelter and vehicle emissions provided the highest contributions to the total element mass with 55%, 12.1% and 10.3%, respectively. During the control period, K, Fe, Ba, Cu and Zn were the dominating elements, and fireworks burning and vehicle emissions contributed 55% and 27% of the total element mass. After the control period, Fe, K, Ca, Zn and Ba were the main elements, and dust and iron and steel industry were responsible for 56% and 21% of the total element mass. The increased contribution from vehicle emissions during the control period could be attributed to our sampling site being near a town hospital and the fact that the vehicle activities were not restricted. The source apportionment results were also related to air mass backward trajectories. The largest reductions of dust, coal combustion, and the industrial sources (Cr industry, Zn smelter, Se industry, iron and steel industry) were distinctly seen for northwest transport (Ulanqab) and were least significant for northeast transport (Tangshan and Tianjin).


Subject(s)
Air Pollutants/analysis , Coronavirus Infections , Coronavirus , Pandemics , Pneumonia, Viral , Beijing , Betacoronavirus , COVID-19 , China , Cities , Dust/analysis , Environmental Monitoring , Humans , Particulate Matter/analysis , SARS-CoV-2 , Seasons , Vehicle Emissions/analysis
SELECTION OF CITATIONS
SEARCH DETAIL